Wednesday, September 13, 2017

Contoh Makalah Redoks

BAB I
PENDAHULUAN
A.    Latar Belakang
Di indonesia sudah banyak terjadi pencemaran lingkungan dan masalah tersebut memberi dampak buruk bagi warga yang tinggal di sekitarnya. Salah satu contoh dari pencemaran lingkungan yaitu pencemaran udara yang disebabkan oleh asap knalpot kendaraan masalah ini bisa menyebabkan warga jatuh sakit karena gangguan pernafasan contoh lainnya yaitu pencemaran tanah, pencemaran tanah ini bisa mengakibatkan tanah tersebut tidak subur lagi atau sudah tidak bisa digunakan sebagai media tanam. Masalah masalah seperti ini bisa kita atasi dengan berbagai cara seperti menggunakan konsep redoks dalam kehidupan sehari hari. Agar sudah tidak ada lagi pencemaran-pencemaran tersebut.
Redoks adalah  istilah yang menjelaskan berubahnya bilangan oksidasi (keadaan oksidasi) atom-atom dalam sebuah reaksi kimia. Hal ini dapat berupa proses redoks yang sederhana seperti oksidasi karbon yang menghasilkan karbon dioksida, atau reduksi karbon oleh hidrogen menghasilkan metana(CH4), ataupun ia dapat berupa proses yang kompleks seperti oksidasi gula pada tubuh manusia melalui rentetan transfer elektron yang rumit.

B.     Rumusan Masalah
1.      Pengertian Redoks
2.      Contoh atau Pengaplikasian Konsep Redoks dalam kehidupan sehari hari







BAB II
PEMBAHASAN
A.    Pengertian Redoks/Konsep Redoks
Redoks adalah istilah yang menjelaskan berubahnya bilangan oksidasi (keadaan oksidasi) atom-atom dalam sebuah reaksi kimia. Hal ini dapat berupa proses redoks yang sederhana seperti oksidasi karbon yang menghasilkan karbon dioksida, atau reduksi karbon oleh hidrogen menghasilkan metana(CH4), ataupun ia dapat berupa proses yang kompleks seperti oksidasi gula pada tubuh manusia melalui rentetan transfer elektron yang rumit.
Walaupun cukup tepat untuk digunakan dalam berbagai tujuan, penjelasan di atas tidaklah persis benar. Oksidasi dan reduksi tepatnya merujuk pada perubahan bilangan oksidasi karena transfer elektron yang sebenarnya tidak akan selalu terjadi. Sehingga oksidasi lebih baik didefinisikan sebagai peningkatan bilangan oksidasi, dan reduksi sebagai penurunan bilangan oksidasi. Dalam praktiknya, transfer elektron akan selalu mengubah bilangan oksidasi, namun terdapat banyak reaksi yang diklasifikasikan sebagai "redoks" walaupun tidak ada transfer elektron dalam reaksi tersebut (misalnya yang melibatkan ikatan kovalen).
Senyawa-senyawa yang memiliki kemampuan untuk mengoksidasi senyawa lain dikatakan sebagai oksidatif dan dikenal sebagai oksidator atau agen pengoksidasi. Oksidator melepaskan elektron dari senyawa lain, sehingga dirinya sendiri tereduksi. Oleh karena ia "menerima" elektron, ia juga disebut sebagai penerima elektron. Oksidator bisanya adalah senyawa-senyawa yang memiliki unsur-unsur dengan bilangan oksidasi yang tinggi (seperti H2O2, MnO−4, CrO3, Cr2O2−7, OsO4) atau senyawa-senyawa yang sangat elektronegatif, sehingga dapat mendapatkan satu atau dua elektron yang lebih dengan mengoksidasi sebuah senyawa (misalnya oksigen, fluorin, klorin, dan bromin).
Senyawa-senyawa yang memiliki kemampuan untuk mereduksi senyawa lain dikatakan sebagai reduktif dan dikenal sebagai reduktor atau agen pereduksi. Reduktor melepaskan elektronnya ke senyawa lain, sehingga ia sendiri teroksidasi. Oleh karena ia "mendonorkan" elektronnya, ia juga disebut sebagai penderma elektron. Senyawa-senyawa yang berupa reduktor sangat bervariasi. Unsur-unsur logam seperti Li, Na, Mg, Fe, Zn, dan Al dapat digunakan sebagai reduktor. Logam-logam ini akan memberikan elektronnya dengan mudah. Jenis reduktor lainnya adalah reagen transfer hidrida, misalnya NaBH4 dan LiAlH4), reagen-reagen ini digunakan dengan luas dalam kimia organik[1][2], terutama dalam reduksi senyawa-senyawa karbonil menjadi alkohol. Metode reduksi lainnya yang juga berguna melibatkan gas hidrogen (H2) dengan katalis paladium, platinum, atau nikel, Reduksi katalitik ini utamanya digunakan pada reduksi ikatan rangkap dua ata tiga karbon-karbon.
Cara yang mudah untuk melihat proses redoks adalah, reduktor mentransfer elektronnya ke oksidator. Sehingga dalam reaksi, reduktor melepaskan elektron dan teroksidasi, dan oksidator mendapatkan elektron dan tereduksi. Pasangan oksidator dan reduktor yang terlibat dalam sebuah reaksi disebut sebagai pasangan redoks.

B.  Contoh Pengaplikasian Konsep Redoks dalam Kehidupan Sehari-hari
1.  Zat pemutih
Zat pemutih adalah senyawa yang dapat digunakan untuk menghilangkan warna benda, seperti pada tekstil, rambut dan kertas. Penghilangan warna terjadi melalui reaksi oksidasi. Oksidator yang biasa digunakan adalah natrium hipoklorit (NaOCl) dan hidrogen peroksida (H2O2).
Warna benda ditimbulkan oleh elektron yang diaktivasi oleh sinar tampak. Hilangnya warna benda disebabkan oksidator mampu menghilangkan elektron tersebut. Elektron yang dilepaskan kemudian diikat oleh oksidator.
2. Fotosintesis
Fotosintesis adalah proses reaksi oksidasi-reduksi biologi yang terjadi secara alami. Fotosintesis merupakan proses yang kompleks dan melibatkan tumbuhan hijau, alga hijau atau bakteri tertentu. Organisme ini mampu menggunakan energi dalam cahaya matahari (cahaya ultraviolet) melalui reaksi redoks menghasilkan oksigen dan gula.
3. Pembakaran
Pembakaran merupakan contoh reaksi redoks yang paling umum. Pada pembakaran propana
(C3H8-;) di udara (mengandung O2), atom karbon teroksidasi membentuk CO2 dan atom oksigen tereduksi menjadi H2O.
3.      baterai Nikel Kadmium
Baterai nikel-kadmium merupakan jenis baterai yang dapat diisi ulang seperti aki,baterai HP, dll. Anoda yang digunakan adalah kadmium, katodanya adalah nikel danelektrolitnya adalah KOH. Reaksi yang terjadi:
   anoda : Cd + 2 OH-→Cd(OH)2+ 2e
   katoda : NiO(OH) + H2O→Ni(OH)2+ OH-
   Potensial sel yang dihasilkan sebesar 1,4 volt.
5. Baterai alkali
Baterai alkali hampir sama dengan bateri karbon-seng. Anoda dan katodanya samadengan baterai karbon-seng, seng sebagai anoda dan MnO2 sebagai katoda.Perbedaannya terletak pada jenis elektrolit yang digunakan. Elektrolit pada bateraialkali adalah KOH atau NaOH. Reaksi yang terjadi adalah:
   anoda: Zn + 2 OH-→ZnO + H2O + 2e
   katoda: 2MnO2+ H2O + 2e-→Mn2O3+ 2OH-
Potensial sel yang dihasilkan baterai alkali 1,54 volt. Arus dan tegangan padabaterai alkali lebih stabil dibanding baterai karbon-seng.
6. Baterai perak oksida
Bentuk baterai ini kecil seperti kancing baju biasa digunakan untuk baterai arloji,kalkulator, dan alat elektronik lainnya. Anoda yang digunakan adalah seng,katodanya adalah perak oksida dan elektrolitnya adalah KOH. Reaksi yang terjadi:
   anoda : Zn→Zn2++ 2 e-
   katoda : Ag2O + H2O + 2e→2Ag + 2 OH-
   Potensial sel yang dihasilkan sebesar 1,5 volt.
7. AKI
Jenis baterai yang sering digunakan pada mobil adalah baterai 12 volt timbal-asamyang biasa dinamakan Aki. Baterai ini memiliki enam sel 2 volt yang dihubungkanseri. Logam timbal dioksidasi menjadi ion Pb2+
dan melepaskan duaelektron di anoda. Pb dalam timbal (IV) oksida mendapatkan dua elektron danmembentuk ion Pb2+ di katoda. Ion Pb2+bercampur dengan ion SO42- dari asamsulfat membentuk timbal (II) sulfat pada tiap-tiap elektroda. Jadi reaksi yang terjadiketika baterai timbal-asam digunakan menghasilkan timbal sulfat pada keduaelektroda
   PbO2+ Pb + 2H2SO4→2PbSO4+ 2H2O
Reaksi yang terjadi selama penggunaan baterai timbal-asam bersifat spontan dantidak memerlukan input energi. Reaksi sebaliknya, mengisi ulang baterai, tidakspontan karena membutuhkan input listrik dari mobil. Arus masuk ke baterai danmenyediakan energi bagi reaksi di mana timbal sulfat dan air diubah menjaditimbal(IV) oksida, logam timbal dan asam sulfat.
   2PbSO4+ 2H2O→PbO2+ Pb + 2H2SO4
8.    Baterai karbon-seng
Kalau anda memasukkan dua atau lebih baterai dalam senter, artinya andamenghubungkannya secara seri. Baterai harus diletakkan secara benar sehinggamemungkinkan elektron mengalir melalui kedua sel. Baterai yang relatif murah iniadalah sel galvani karbon-seng, dan terdapat beberapa jenis, termasuk standarddan alkaline. Jenis ini sering juga disebut sel kering karena tidak terdapat larutanelektrolit, yang menggantikannya adalah pasta semi padat.Pasta mangan(IV) oksida (MnO2) berfungsi sebagai katoda. Amonium klorida(NH4Cl) dan seng klorida (ZnCl2) berfungsi sebagai elektrolit. Seng pada lapisanluar berfungsi sebagai anoda.Reaksi yang terjadi :
   anoda : Zn→Zn2++ 2 e-
   katoda : 2MnO2+ H2O + 2e-→Mn2O3+ 2OH-
Dengan menambahkan kedua setengah reaksi akan membentuk reaksi redoksutama yang terjadi dalam sel kering karbon-seng.
   Zn + 2MnO2+ H2O→Zn2++ Mn2O3+ 2OH-
Baterai ini menghasilkan potensial sel sebesar 1,5 volt. baterai ini bias digunakanuntuk menyalakan peralatan seperti senter, radio, CD player, mainan, jam dansebagainya.
9. Pengaratan logam
   4Fe(s)+3O2(g)→2Fe2O3(s)
10. Redoks dalam Fotografi
Film foto graf idibuat dari plastik yang dilapisi gelatin yang mengandung milyaran butiran AgBr, yang peka terhadap cahaya
   -Ketikacahayamengenaibutiran-butiranAgBr,terjadilahreaksiredoks
   -SehinggaionAg+tereduksimenjadilogamnya,danionBr-menjadigasBromin
11. Pernapasan sel
contohnya, adalah oksidasi glukosa (C6H12O6) menjadi CO2 dan reduksi oksigen menjadi air. Persamaan ringkas dari pernapasan sel adalah:
   C6H12O6 + 6 O2 → 6 CO2 + 6 H2O
12. Reaksi dalam sel bahan bakar
   2H2+4OH-→4H2O+4e
   O2(g)+2H2O+4e-→4OH-
   Reaksitotal
   2H2(g)+O2(g)→2H2O(l)
13. Las karbits
Karbit atau Kalsium karbida adalah senyawa kimia dengan rumus kimia CaC2. Karbit digunakan dalam proses las karbit dan juga dapat mempercepat pematangan buah.
   Persamaan reaksi Kalsium Karbida dengan air adalah:
   CaC2 + 2 H2O → C2H2 + Ca(OH)2
Karena itu 1 gram CaC2 menghasilkan 349ml asetilen. Pada proses las karbit, asetilen yang dihasilkan kemudian dibakar untuk menghasilkan panas yang diperlukan dalam pengelasan.
14. Pada perkaratan besi
Pada peristiwa perkaratan (korosi), logam mengalami oksidasi, sedangkan oksigen (udara) mengalami reduksi.
   Rumus kimia dari karat besi adalah Fe2O3 . xH2O => berwarna coklat-merah.
   Korosi merupakan proses elektrokimia. Pada korosi besi, bagian tertentu
   dari besi itu berlaku sebagai anode, dimana besi mengalami oksidasi.
   Fe(s) —–> Fe2+(aq) +2e ………….. E=+0,44V
   O2(g) + 2H2O(l) +4e ——–> 4OH- ……. E=+0,40V
Ion besi (II) yg terbentuk pd anode selanjutnya teroksidasi membentuk ion besi (III) yg kemudian membentuk senyawa oksida terhidrasi, Fe2O3 . xH2O, yaitu karat besi.
15. PENGOLAHAN AIR KOTOR (SEWAGE)
   => pengolahan air kotor ada 3 tahap : tahap primer, sekunder, dan tersier. Saya akan menyingkat tahap ini satu persatu…
   a) TAHAP PRIMER
   => untuk memisahkan sampah yang tidak larut air, yang dilakukan dengan penyaringan dan pengendapan.
   b) TAHAP SEKUNDER
    => untuk menghilangkan BOD dengan jalan mengOKSIDASInya.
    c) TAHAP TERSIER
   => untuk menghilangkan sampah yang masih terdapat.
Lumpur aktif merupakan Lumpur yang kaya dengan bakteri yang dapat menguraikan limbah organic yang dapar mengalami biodegradasi. Bakteri aerobmengubah sampah organic menjadi biomassa dan CO2, N menjadi ammoniumdan nitrat, P menjadi fosfat.
16. Penyapuhan emas
Dalam proses penyepuhan dengan emas reaksi yg terjadi adalah reduksi ion-ion emasmenjadi logamnya,
   Au+ + e- -> Au atau Au3+ + 3e- -> Au2.
17. Peleburan biji logam
   Untuk besi, reaksi totalnya adalah
   2Fe2O3 + 3C -> 4Fe + 3CO2 Fe2O3
   adalah bijih besi (hematit) dengan kokas (karbon/C) sebagai reduktor.
18. Dalam sistem biosensor
sistem biosensor berupa alat pengukur kadar gula dan kolesterol berbasis enzimdidalam tanah untuk keperluan medis yang menggunakan teknologi film tebal(thick film). Alat Pengukur kadar gula dan kolesterol dalam darah bekerjamenggunakan prinsip elektrokimia amperometrik. Prinsip kerja deteksi dari alatini didasari pada reaksi yang terjadi antara enzim glucose oxidase dancholesterol oxidase dengan sample darah yang diukur. Proses reaksi kimiawi inimenghasilkan aliran arus listrik yang kemudian diproses oleh signal conditioningdan data akusisi. Hasil proses ini merupakan besar kadar gula dan kolesterol didalam darah. Peralatan ini bersifat portable, kompak dan berdaya rendah
19. Pengolahan Alumunium
Zaman dahulu kala, Alumunium termasuk logam yang harganya mahaldipasaran. Hal ini dikarenakan jumlahnya yang sedikit di alam dan caramendapatannya yang cukup sulit. Cara memperolehnya dengan cara elektrolisistidak berhasil karena apabila larutan garam alumunium dihidrolisis, air lebihmudah direduksi daripada Ion Alumunium. Hal ini menyebabkan gas Hidrogenyang terbentuk di anoda dan bukannya Alumunium. Elektrolisis leburanAlumunium juga tidak berhasil karena 2 hal : Larutan tidak berbentuk ion dansenyawanya mudah menguap apabila bersuhu tinggi. Elektrolisis oksidanya jugatidak praktis karena titik lelehnya yang tinggi yang mencapai 2000 derajatcelsius.Pada tahun 1886, Charles Hall dari Oberlin College menemukan cara yangdapatdigunakan untuk mengelektrolisis Alumunium Oksida dengan menggunakanAl2O3dengan Kriolit Na3AlF3. Penambahan Kriolit ke dalam
Al2O3menurunkantemperatur campuran hingga 1000 derajat celcius, sehingga elektrolisi dapatdilaksanakan. Bejana yang menampung campuran alumunium terbuat dari besiyang dilapisi beton yang bertindak sebagai katoda dan batang karbon yangberfungsi sebagai Anoda.
20. Pengolahan Magnesium
Magnesium merupakan logam yang penting karena sangat ringan. Magnesiumdijumpai berlimpah dalamair laut. Ion magnesium diendapkan dari air lautsebagai hodroksida, kemudian Mg(OH)2
diubah menjadi kloridanya dengan caramereduksinya dengan asam klorida. setelah airnya menguap, MgCl2dilelehkandan dielektrolisis. Magnesium dihasilkan di katoda dan Klor di Anoda.
Contoh lain
1. The Dry Cell Battery
Dikenal dengan istilah sel Leclanche atau batu baterai kering. Pada batu baterai kering, logam seng berfungsi sebagai anoda. Katodanya berupa batang grafit yang berada di tengah sel. Terdapat satu lapis mangan dioksida dan karbon hitam mengelilingi batang grafit dan pasta kental yang terbuat dari amonium klorida dan seng (II) klorida yang berfungsi sebagai elektrolit. Potensial yang dihasilkan sekitar 1,5 volt.
  Reaksi selnya adalah sebagai berikut :
   Katoda (+) : 2 NH4+(aq) + 2 MnO2(s) + 2 e- ——> Mn2O3(s) + 2 NH3(aq) + H2O(l) ……………… (1)
   Anoda (-) : Zn(s) ——> Zn2+(aq) + 2 e- …………….. (2)
   Reaksi Sel : 2 NH4+(aq) + 2 MnO2(s) + Zn(s) ——> Mn2O3(s) + 2 NH3(aq) + H2O(l) + Zn2+(aq) …………….. [(1) + (2)]
Pada batu baterai kering alkalin (baterai alkalin), amonium klorida yang bersifat asam pada sel kering diganti dengan kalium hidroksida yang bersifat basa (alkalin). Dengan bahan kimia ini, korosi pada bungkus logam seng dapat dikurangi.
2. The Mercury Battery
Sering digunakan pada dunia kedokteran dan industri elektronik. Sel merkuri mempunyai struktur menyerupai sel kering. Dalam baterai ini, anodanya adalah logam seng (membentuk amalgama dengan merkuri), sementara katodanya adalah baja (stainless steel cylinder). Elektrolit yang digunakan dalam baterai ini adalah merkuri (II) Oksida, HgO. Potensial yang dihasilkan sebesar 1,35 volt.
  Reaksi selnya adalah sebagai berikut :
   Katoda (+) : HgO(s) + H2O(l) + 2 e- ——> Hg(l) + 2 OH-(aq) …………………… (1)
   Anoda (-) : Zn(Hg) + 2 OH-(aq) ——> ZnO(s) + H2O(l) + 2 e‑ ………………….. (2)
   Reaksi sel : Zn(Hg) + HgO(s) ——> ZnO(s) + Hg(l) ………………………. [(1) + (2)]
3. The Lead Storage Battery
Dikenal dengan sebutan baterai mobil atau aki/accu. Baterai penyimpan plumbum (timbal) terdiri dari enam sel yang terhubung secara seri. Anoda pada setiap sel adalah plumbum (Pb), sedangkan katodanya adalah plumbum dioksida (PbO2). Elektroda dicelupkan ke dalam larutan asam sulfat (H2SO4).
  Reaksi selnya pada saat pemakaian aki adalah sebagai berikut :
   Katoda (+) : PbO2(s) + 4 H+(aq) + SO42-(aq) + 2 e- ——> PbSO4(s) + 2 H2O(l) ………………… (1)
   Anoda (-) : Pb(s) + SO42-(aq) ——> PbSO4(s) + 2 e- …………………………… (2)
   Reaksi sel : PbO2(s) + Pb(s) + 4 H+(aq) + 2 SO42-(aq) ——> 2 PbSO4(s) + 2 H2O(l) ……………………. [(1) + (2)]
Pada kondisi normal, masing-masing sel menghasilkan potensial sebesar 2 volt. Dengan demikian, sebuah aki dapat menghasilkan potensial sebesar 12 volt. Ketika reaksi diatas terjadi, kedua elektroda menjadi terlapisi oleh padatan plumbum (II) sulfat, PbSO4, dan asam sulfatnya semakin habis.
Semua sel galvani menghasilkan listrik sampai semua reaktannya habis, kemudian harus dibuang. Hal ini terjadi pada sel kering dan sel merkuri. Namun, sel aki dapat diisi ulang (rechargeable), sebab reaksi redoksnya dapat dibalik untuk menghasilkan reaktan awalnya. Reaksi yang terjadi saat pengisian aki merupakan kebalikan dari reaksi yang terjadi saat pemakaian aki.
4. The Lithium-Ion Battery
Digunakan pada peralatan elektronik, seperti komputer, kamera digital, dan telepon seluler. Baterai ini memiliki massa yang ringan sehingga bersifat portable. Potensial yang dihasilkan cukup besar, yaitu sekitar 3,4 volt. Anodanya adalah Li dalam grafit, sementara katodanya adalah oksida logam transisi (seperti CoO2). Elektrolit yang digunakan adalah pelarut organik dan sejumlah garam organik.
  Reaksi yang terjadi adalah sebagai berikut :
   Katoda (+) : Li+(aq) + CoO2(s) + e- ——> LiCoO2(s) ………………. (1)
   Anoda : Li(s) ——> Li+ (aq) + e- ………………. (2)
   Reaksi sel : Li(s) + CoO2(s) ——> LiCoO2(s) ……………………. [(1) + (2)]
5. Fuel Cell
Dikenal pula dengan istilah sel bahan bakar. Sebuah sel bahan bakar hidrogen-oksigen yang sederhana tersusun atas dua elektroda inert dan larutan elektrolit, seperti kalium hidroksida. Gelembung gas hidrogen dan oksigen dialirkan pada masing-masing elektroda. Potensial yang dihasilkan adalah sebesar 1,23 volt.
  Reaksi yang terjadi adalah sebagai berikut :
   Katoda (+) : O2(g) + 2 H2O(l) +4 e- ——> 4 OH-(aq) ………………..(1)
   Anoda (-) : 2 H2(g) + 4 OH-(aq) ——> 4 H2O(l) + 4 e- ……………………… (2)
   Reaksi sel : O2(g) + 2 H2(g) ——> 2 H2O(l) ………………. [(1) + (2)]






















BAB III
PENUTUP
B.     Kesimpulan
Redoks adalah istilah yang menjelaskan berubahnya bilangan oksidasi (keadaan oksidasi) atom-atom dalam sebuah reaksi kimia. Hal ini dapat berupa proses redoks yang sederhana seperti oksidasi karbon yang menghasilkan karbon dioksida, atau reduksi karbon oleh hidrogen menghasilkan metana(CH4), ataupun ia dapat berupa proses yang kompleks seperti oksidasi gula pada tubuh manusia melalui rentetan transfer elektron yang rumit.

C.     Saran
Pengaplikasian Redoks dalam kehidupan sehari-hari sangat bermanfaat oleh karena itu gunakanlah Redoks ini untuk pemanfaatan yang baik.












DAFTAR PUSTAKA


No comments:

Post a Comment